- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Jambulapati, Arun (2)
-
Sachdeva, Sushant (2)
-
Sidford, Aaron (2)
-
Tian, Kevin (2)
-
Zhao, Yibin (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Jambulapati, Arun; Sachdeva, Sushant; Sidford, Aaron; Tian, Kevin; Zhao, Yibin (, https://doi.org/10.48550/arXiv.2408.10172)The authors present an algorithm that, given an n-vertex m-edge Eulerian graph with polynomially bounded weights, computes an 𝑂 ~ ( 𝑛 log 2 𝑛 ⋅ 𝜀 − 2 ) O ~ (nlog 2 n⋅ε −2 )-edge 𝜀 ε-approximate Eulerian sparsifier with high probability in 𝑂 ~ ( 𝑚 log 3 𝑛 ) O ~ (mlog 3 n) time (where 𝑂 ~ ( ⋅ ) O ~ (⋅) hides polyloglog(n) factors). By a reduction from Peng-Song (STOC ’22), this yields an 𝑂 ~ ( 𝑚 log 3 𝑛 + 𝑛 log 6 𝑛 ) O ~ (mlog 3 n+nlog 6 n)-time algorithm for solving n-vertex m-edge Eulerian Laplacian systems with polynomially bounded weights with high probability, improving on the previous state-of-the-art runtime of Ω ( 𝑚 log 8 𝑛 + 𝑛 log 23 𝑛 ) Ω(mlog 8 n+nlog 23 n). They also provide a polynomial-time algorithm that computes sparsifiers with 𝑂 ( min ( 𝑛 log 𝑛 ⋅ 𝜀 − 2 + 𝑛 log 5 / 3 𝑛 ⋅ 𝜀 − 4 / 3 , 𝑛 log 3 / 2 𝑛 ⋅ 𝜀 − 2 ) ) O(min(nlogn⋅ε −2 +nlog 5/3 n⋅ε −4/3 ,nlog 3/2 n⋅ε −2 )) edges, improving the previous best bounds. Furthermore, they extend their techniques to yield the first 𝑂 ( 𝑚 ⋅ polylog ( 𝑛 ) ) O(m⋅polylog(n))-time algorithm for computing 𝑂 ( 𝑛 𝜀 − 1 ⋅ polylog ( 𝑛 ) ) O(nε −1 ⋅polylog(n))-edge graphical spectral sketches, along with a natural Eulerian generalization. Unlike prior approaches using short cycle or expander decompositions, their algorithms leverage a new effective resistance decomposition scheme, combined with natural sampling and electrical routing for degree balance. The analysis applies asymmetric variance bounds specialized to Eulerian Laplacians and tools from discrepancy theory.more » « less
An official website of the United States government

Full Text Available